

NREL/NASA Internal Short-Circuit Instigator in Lithium Ion Cells

JRC Lithium Ion Safety Workshop Petten, Netherlands March 8-9,2018

Matt Keyser, National Renewable Energy Laboratory Eric Darcy, NASA - JSC

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Presentation Outline

- Background
- Motivation
- Objectives
- NREL/NASA ISC Approach
- ISC Studies
 - Pouch Cell Flammable vs. Non-flammable Electrolyte
 - 18650 Cylindrical Cell Shutdown Separator Study
 - Synchrotron Testing with ISC
- Conclusions and Summary

Background: Li-Ion Cell Internal Short, a Major Concern

Aftermath of the Boeing Dreamliner 787 Battery

Laptop Battery Fire

Aftermath of a Hoverboard Battery Fire

Samsung Galaxy Note 7 Fire/Recall

- Li-ion cells provide the highest energy density of all rechargeable batteries to date with the longest life.
- Many safety incidents that take place in the field originate due to an internal short that was not detectable or predictable at the point of manufacture.

Motivation

Lithium Ion Battery Field Failures - Mechanisms

- Latent defect gradually moves into position to create an internal short while the battery is in use.
- Inadequate design and/or off-limits operation (cycling) causes Li surface plating on anode, eventually stressing the separator

Both mechanisms are rare enough that catching one in the act or even inducing a cell with a benign short into a hard short is inefficient.

Current internal short abuse test methods may not be relevant to field failures

- Mechanical (crush, nail penetration, etc.)
- Thermal (heat to vent, thermal cycling, etc.)
- Electrical (overcharge, off-limits cycling, etc.)

To date, no reliable and practical method exists to create on-demand internal shorts in Li-ion cells that produce a response that is <u>relevant</u> to the ones produced by field failures.

NREL/NASA Objectives

Establish an improved ISC cell-level test method that:

- Simulates an emergent internal short circuit.
 - Capable of triggering the four types of cell internal shorts

Spiral wound battery shown – can also be applied to prismatic batteries.

- Produces consistent and reproducible results
- Cell behaves normally until the short is activated age cell before activation.
- We can establish the test conditions for the cell SOC, temperature, power, etc...
- Provides relevant data to validate ISC models

NREL/NASA Cell Internal Short Circuit Development

Internal short circuit device design

- Small, low-profile and implantable into Li-ion cells, preferably during assembly
- Key component is an electrolytecompatible phase change material (PCM)
- Triggered by heating the cell above PCM melting temperature (presently 40°C – 60°C)
 - NREL has developed an ISC that triggers at 47°C and 57°C.

ISC in spiral wound cell

NREL/NASA Internal Short Design

US Patent #: 9,142,189

Top to Bottom: 1. Copper Pad 2. Battery Separator with Copper Puck 3. Wax – Phase Change Material 4. Aluminum Pad

Four Types of ISC

Туре	ISC Device Description
1	Cathode – Anode
2	Collector – Anode
3	Cathode – Collector
4	Collector – Collector

ISC Device Example for a Type 2 Short

Cathode current collector to Anode active material

Cathode Active layer 75.0 microns

Anode Active Layer 43 microns

Superglue used to hold ISC together.

ISC Device Example for a Type 4 Short

Cathode current collector to Anode current collector

Cathode Active layer 75.0 microns

• Superglue used to hold ISC together.

Dow Kokam 8 Ah Cell Activation at 10% SOC

Macro Image of Cathode DK Cell Tab – Al to Cu ISC

Molten Al is evident several places

Photo Credits: Eric Darcy, NASA NATIONAL RENEWABLE ENERGY LABORATORY

ISC Device Implantation and Test Results

- Pouch Cell Non-flammable (NF) electrolyte
- 18650 Cylindrical Cell Shutdown Separator Study
- Synchrotron Testing with ISC Trigger

Test Fixture

~20 Ah cells were testing with two types electrolytes and with a Type 2 ISC – Al to Anode.

Type 2 ISC – Aluminum to Anode ISC

Cathode Active layer 75.0 microns

Type 2, Control Electrolyte

Type 2, Control Electrolyte

Type 2, Non-flammable (NF) Electrolyte

Type 2, NF Electrolyte

ISC Device Implantation and Test Results

- Pouch Cell Non-flammable (NF) electrolyte
- 18650 Cylindrical Cell Shutdown Separator Study
- Synchrotron Testing with ISC Trigger

ISC Implantation – Active to Active

Photo Credits: Mark Shoesmith, E-One Moli

CT Scan of ISC in E-One Moli Cell

Click on Image to see video – approximately 10 seconds into video the ISC will appear in the lower left hand corner of the cell.

Photo Credits: Mark Shoesmith, E-One Moli

Type 2 ISC vs. Type 4 ISC with Shutdown Separator

Aluminum to Anode ISC Activation – 18650 Cell Activation – 100% SOC

Photo Credit: Mark Shoesmith, E-One Moli

PP Separator Used - Non-Standard Separator

NATIONAL RENEWABLE ENERGY LABORATORY

ISC Device Implantation and Test Results

- Pouch Cell Non-flammable (NF) electrolyte
- 18650 Cylindrical Cell Shutdown Separator Study
- Synchrotron Testing with ISC Trigger

CT Images of ISC Device

Cathode Active lay	er 70 microns				
Cathode Active lay	er 70 microns	Cathode Current Collector			
	Aluminum ISC Pad 76 n	licrons			
		-			
eparator 20 micro	m5	wax layer - 20 micr	ons		
		Çu Puçk 25 micron:			
	Copper ISC Pad 25 mil	rons			
Anode Active Lay	er 70 microns				
_					_
Anode Active Lay	er 70 microns				
				1 and the second second	
				~	
			ALL		
					and the second
	W				1.0
					-
			- <i>1111</i> 1111		Alla, Al
	Cup	JCK			
	Al pa	d remov	ed for	Claud	

Clearly shows that active material hole boundaries are much wider than the device

Single Cell TR – Moli 2.4Ah with ISC Device

Open air test with cell charged to 4.2V and with TCs welded to cell side wall (2) and bottom (1)

2.4Ah Cell with ISC Device – JR Ejection

video courtesy of D. Finegan, UCL

3.5Ah Cell #21 with ISC Device Video

JR ejected

- Top edge of crimp shows reflow steel
- Side wall breach in neck of crimp is clocked with ISC device
- Smaller breach in can wall is slightly off the ISC device clocking and above it

Summary and Conclusions

Used to Study

- Type of Separators
- Non-flammable electrolytes
- Electrolyte Additives
- Fusible Tabs
- Propagation Studies
- Top and bottom vents
- Gas generation within a cell
- Much more...
- Being used to make batteries safer.

Acknowledgments

- Funding provided through Energy Storage Research and Development Program at the Vehicle Technologies Office in the U.S. Department of Energy.
 - Dave Howell
 - Brian Cunningham
 - Samuel Gillard
- Acknowledgements
 - NASA Thermal Runaway Severity Reduction Team
 - Chris Iannello, NESC Technical Fellow for Electrical Power, and Deputy, Rob Button
 - Paul Coman, PhD candidate with University of Denmark, and Ralph White, USC
 - Jacob Darst, Kyle Karinshak, and Stephanie Scharf, NASA summer/fall interns
 - Dereck Lenoir, Thomas Viviano, Tony Parish, Henry Bravo/NASA test
 - Gary Bayles, consultant, SAIC

Contact Information

- Matt Keyser NREL
 - <u>matthew.keyser@nrel.gov</u>
 - 303/275-3876
- Eric Darcy NASA
 - <u>eric.c.darcy@nasa.gov</u>
 - 713/492-1753