

Labs test plan, phase 2 First results analysis

September 1rst, 2020 Claude Chanson

Content

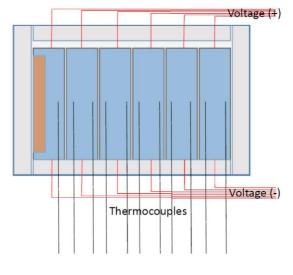
General status of informal working group and test group

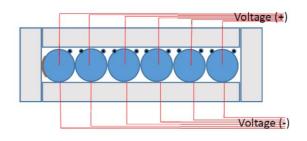
Labs test plan

Phase 1 results summary

Phase 2 preliminary results

General Status of Informal Working Group (IWG) and Test Group


- Last IWG meeting held in Arlington, Texas USA (October 2019)
 - Reviewed data on first round of testing from 7 labs
 - All labs received from PRBA same Li ion cell designs from same manufacturers, tested at 100% state of charge
 - See UN/SCETDG/56/INF.33 for minutes of Arlington meeting
- IWG meeting scheduled for September 2020 in Brussels cancelled due to COVID-19 pandemic
- Test Group meeting scheduled for May 2020 also cancelled, continued web-based meetings, developed second round of tests
 - Additional Li ion cells provided by PRBA to 8 labs, tested at different states of charge
 - Partial results provided today for review by IWG
- Next IWG planned for December 2020 after UN Sub-Committee meeting



Test plan phase 1

 Phase 1: Test of repeatability: 7 labs tested propagation in a row of 6 cells, 3 répétitions of test for pouch and cylindrical, at 100% SOC.

Side View

Top View

Test plan phase 2

- test of effect of heating rate and SOC on propagation for 6 cells in a row (for test labs without gaz analysis, test series 2 and 5): received partial tests of 4 labs has of sept 1.
- test of effect of heating rate and SOC on propagation on gaz hazards, single cell test (for labs with gaz analysis, test series 4 and 6): received partial test of 2 labs has of Sept 1.

Experimental Procedure test series 2-5:

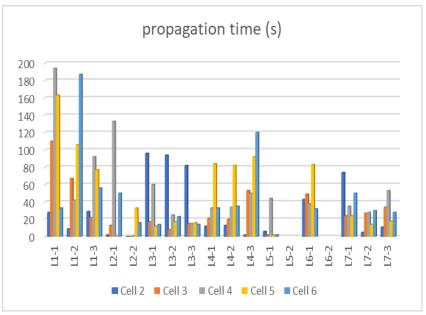
- Charge cells to SoC as in table below
- Heat cells according to Table 1.
- Each test is performed once

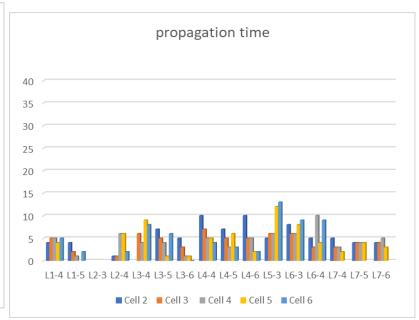
Table 1

	20% SoC	30% SoC	50% SoC	70% SoC	100% SoC
5 C/min					Priority #3
20 C/min	Priority #1	Priority #5	Priority #2	Priority #4	

Test phase 2 results: table creation on going

1 A	В	С	D	E	F	G	H	1	J	K	L	M	N	0	Р	Q	R	S	Т
cyclindrical	2450 mAh																		
Pouch	4800 mAh									based on the	based on the reading of the thermocouple opposite side of the initiation cell.								
											Cell 2	Cell 3						Cell 3	Cell 4
	cell type	heating device type	Heating powe 🔻	heating ra 🔻	SOC	max temp			Closed ch ▼		delta sec 🔻	delta sec 🔻	delta sec 🔻	delta sec 🔻	delta sec 🔻				Max temp
L1-21	NMC/cylindrical	Omega heating pad (2,5 x 5	20	5	10		9 5	0 briks	Υ	1980	62			22	7	669	757	702	7
L1-22	NMC/cylindrical	Omega heating pad (2,5 x 5	20			73	8 3	33 briks	Υ	771,42857	120				122	737,91	617,32	700,63	624
L1-23	NMC/cylindrical	Omega heating pad (2,5 x 5	20	20		57	8 2	9 briks	Υ	504	353	265	267	264	268	556,71	561,42	561,92	52
L1-24	NMC/cylindrical	Omega heating pad (2,5 x 5	20	20	2	0 20	0	briks	Υ	0	0	C	0	0	0	361	213	69	
L1-25	NMC/Pouch	Omega heating pad (5 x 5 cn	40	5	10	0 77	0 8	36 briks	Υ	2040	27	7	11	5	8	769,08	769,5	769,07	76
L1-26	NMC/Pouch	Omega heating pad (5 x 5 cn	40	11	. 7	0 80	0 9	93 briks	Υ	981,81818	31	(30	20	19	678,43	726,15	574,93	799
L1-27	NMC/Pouch	Omega heating pad (5 x 5 cn	40	7		0 65	0 11	L8 briks	Υ	1628,5714	70	22	20	21	23	601,9	623,7	649,69	634
L1-28	NMC/Pouch	Omega heating pad (5 x 5 cn	40	6	1	20	0 12	23 briks	Υ	0	0	(0	0	0	204,8	151,46	122,7	108
L2-21	NMC/cylindrical	1"x 2" Kapton heater	20	10	7	5 79	6 12	21 No (Wool)	N	1174	195	173				762	796	394	
L2-22	NMC/cylindrical	1"x 2" Kapton heater	20	10		0 78	0 4	15 No (Wool)	N	1081	305	232	294	257	229	684	746	710	
L2-23	NMC/cylindrical	1"x 2" Kapton heater	20	10	3	0 47	4 5	3 No (Wool)	N	1180	695	964	1344	282	1052	474	454	442	
L2-24	NMC/cylindrical	1"x 2" Kapton heater	20	18		0 38	6 4	15 No (Wool)	N	1354						386			
L2-25	NMC/Pouch	1"x 2" Kapton heater		10	7	5 95	8 10	08 Wool+Al pla	t N	1600	1	6	18	18	29	1676	958	832	
L2-26	NMC/Pouch	1"x 2" Kapton heater		10		0 77		12 Wool+Al pla		2070						770	748	828	1
L2-27	NMC/Pouch	1"x 2" Kapton heater		10	3	0 53	8 9	1 Wool+Al pla	t N	1765	60	9	165	87	42	458	458	492	
L2-28	NMC/Pouch	1"x 2" Kapton heater		10		0 41		30 Wool+Al pla		1807	841	30			-167	342			
L9-21	NMC/Pouch	Flexible heater	20					31 Wool+Plate		400	4	8			32	822,6			87
L9-22	NMC/Pouch	Flexible heater	20				3 5	7 Wool+Plate	s Y	380	4	10			35				10
L9-23	NMC/Pouch	Flexible heater	20			0 20		30 Wool+Plate	Y	400						200			7
L9-25	NMC/Pouch	Flexible heater	20			0 20		30 Wool+Plate	s Y	400						200			6
L9-27	NMC/cylindrical	cartridge	50					31 Wool+Plate		581	87	245	334	432	500	720	,-		
L9-28	NMC/cylindrical	cartridge	50					28 Wool+Plate		598	100			371	442	732,3			
L9-29	NMC/cylindrical	cartridge	50			0 41		34 Wool+Plate		700	442		200	3/1	712	414,6			10
L9-30	NMC/cylindrical	cartridge	50			0 43		31 Wool+Plate		674	789					437,9			8
L9-32	NMC/cylindrical	cartridge	50			0 31		33 Wool+Plate		840	, 00					314,1	140,2		5
L4-21	NMC/cylindrical	flat	10			0 60		88 Wool+Board		1661,5385	204	196	185	243	155				
14-21	c, cymranical		10	0,5		00.		.voor.board		1001,5383	204	150	103	243	133	303	330	010	
						_	-												

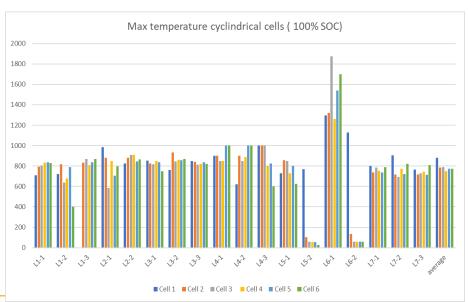


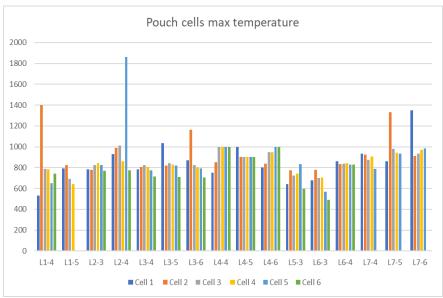


Phase 1 results analysis: propagation rate

- Repetability (per lab): stability of averages and standard deviation and reproducibility (between labs): stability of averages and standard deviation: analysis on-going.

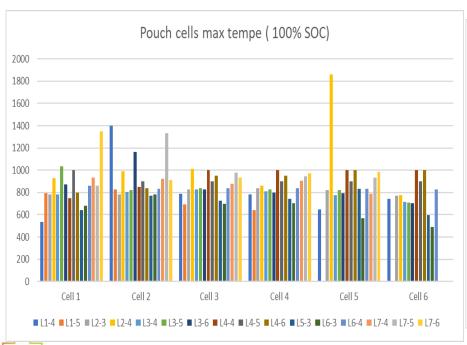
Cylindrical Pouch

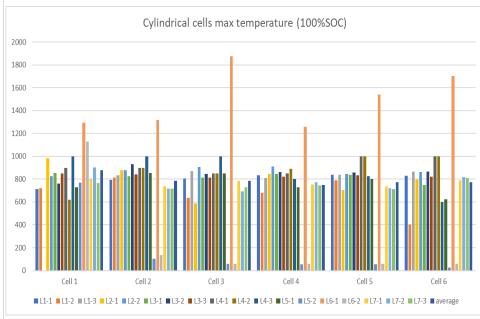

Note: L1-2 means « laboratory 1 test 2 »



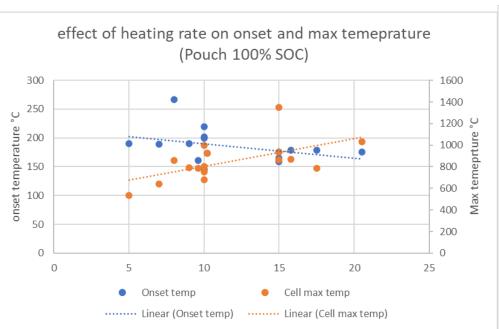
Phase 1 results analysis: max temperature

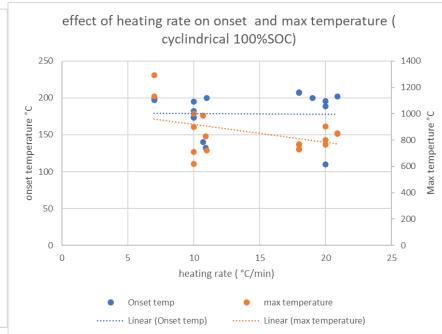
- Repetability (per lab): stability of averages and standard deviation and reproducibility (between labs): stability of averages and standard deviation: analysis on-going.


Cylindrical Pouch

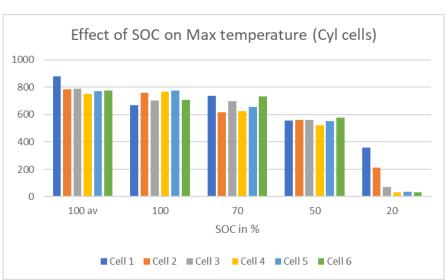


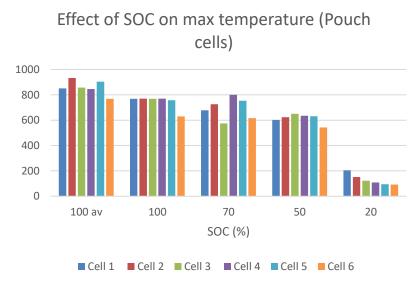
- Effect of initiation method on max temperature: no visible effect. Cell 1 max temp equivalent to others cells with self-propagation. No large effect of pouch/cylindrical



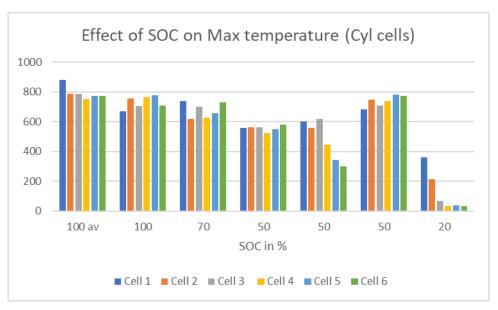


- Effect heating rate on Thermal run-away propagation and max temeprature: no clear effect at 100% SOC, to be verified at lower SOC.



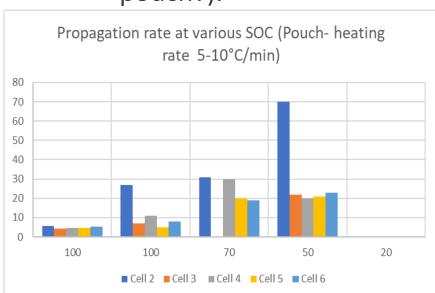


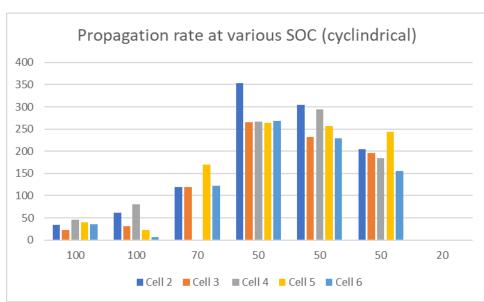
- Stability of the max temperature during self propagation at various SOC: the initiation method seems of little impact on the reaction, except in absence of propagation (20% SOC)


- But repetability within a lab is much better than reproducibility interlabs

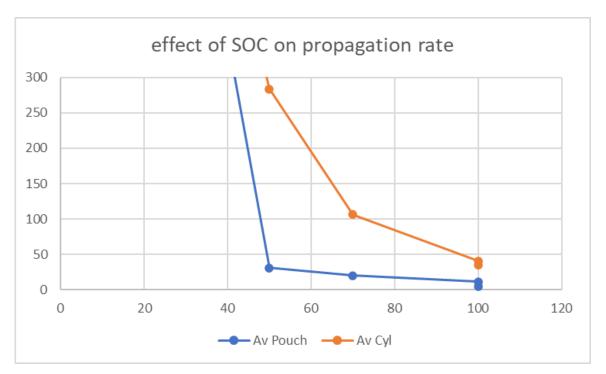
Results of 1 lab

Effect of SOC on Max temperature (Cyl cells) 800 400 200 100 av 100 70 50 20 SOC in %

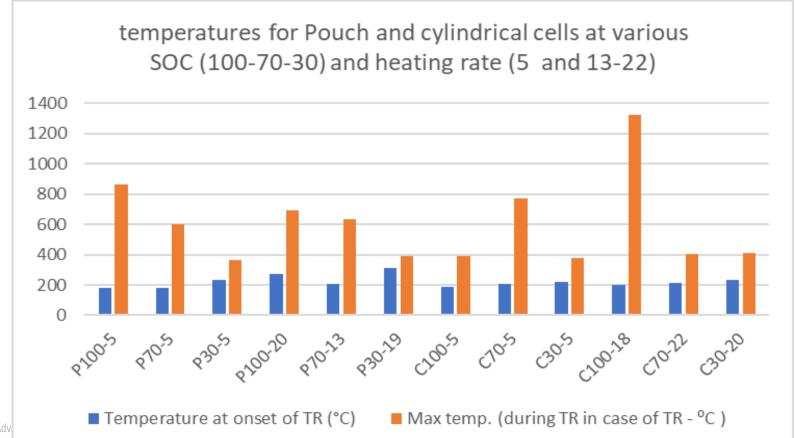

■ Cell 1 ■ Cell 2 ■ Cell 3 ■ Cell 4 ■ Cell 5 ■ Cell 6


Results of 3 labs at 50% SOC

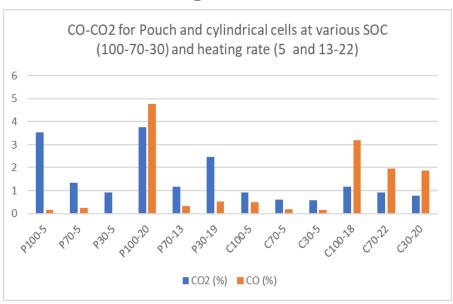
- Effect of SOC, heating rate and type of cell on Thermal runaway: propagation time increases with lower SOC.
- The propagation time is quite stable at all SOC: evidence of minimal impact of the initiation method (except cell 2 for pouch?).

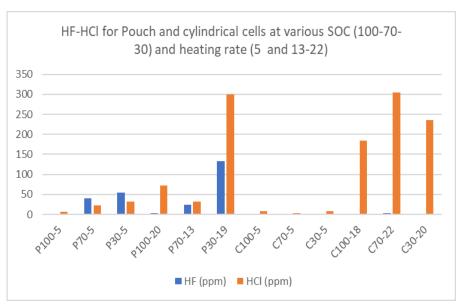


First 100% soc is average of phase 1. The three at 50% SOC are 3 different labs


- Effect of SOC and type of cell on Thermal run-away propagation: propagation rate is more sensitive to shape than max temperature.

 Coherence OK: onset temp increases and max temp decreases with lower SOC, max temp (but effect of low heating rate at 5°C/ on the cyclindrical 100%SOC?)





The Adv

- Gaz analysis: interpertation would need more confirmation
- differences due to format and to SOC, less clear with the heating rate.

Other relevant data

See

- CATL presentation about large cells testing (Oct 2019)
- FAA presentation about gaz production (ref?)

Preliminary conclusions, for discussion

About the lithium batteries hazards characterization

- Tests demonstrate some level of reproducibility of the Thermal runaway hazards, but still need analysis for characterization of it, particularly for gaz composition.
- Some key parameters influencing the hazards per cell, and their propagation, are tested (cell format, cell SOC) but may need to be completed

About the test method:

- -the heater method provides a reproducible way to initiate a thermal runaway. Limit of conditions still need to be precised (heating rates, heater types, ...)
- -the TR obtained by the heater is close to the one obtained by selfpropagation, although the propagation time is very different, demonstrating some robustness of the method.

Preliminary conclusions, for discussion

About the reproducibility between labs:

There are much more difference between labs than within a single lab.

The test decription will have to be more specific and precise:

Identified effect of:

- absence of lid on the test chamber
- various efforts for cells compression during test
- (Possibly) heating rate range
- Others to be discussed...

Next steps

- -Complete the tests table and analysis (anonymized labs names)
- -Circulate to all labs for review
- -further elaborate on the pending issues to prepare the December Meeting
 - hazards characterization
 - method description
 - labs comparison
- -Others?

