Heating Rate Pouch and Cylindrical 18650 Cells

Test Apparatus

•21.7 liter stainless steel pressure vessel

•General test procedure found <u>here</u>

Scope of Test

This study experimented with pouch and cylindrical style lithium-ion cells to determine the effects of heating rate on a cell's thermal runaway across various states of charge.

Test Setup

Volume of vent gas vs state of charge

Percentage of vent gas vs state of charge

Combustion energy if ignited vs heating rate at 100% SoC

Combustion energy if ignited vs state of charge by heating rate

Percent difference in combustion energy by heating rate (20C/min and 5C/min) vs state of charge

Total difference in combustion energy by heating rate (20C/min and 5C/min) vs state of charge

Test Setup

Volume of vent gas vs state of charge

Percentage of vent gas vs state of charge

Combustion energy if ignited vs heating rate at 100% SoC

Combustion energy if ignited vs state of charge by heating rate

Percent difference in combustion energy by heating rate (20C/min and 5C/min) vs state of charge

Total difference in combustion energy by heating rate (20C/min and 5C/min) vs state of charge

Conclusion

- Heating rate affects the combustion hazards due to thermal runaway, especially at lower states of charge
 - More data required to confirm hypothesis for higher SOC
- It is important to test in nitrogen to measure the combustion hazard

