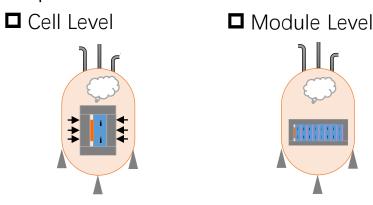
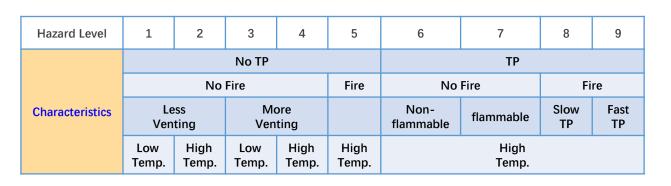
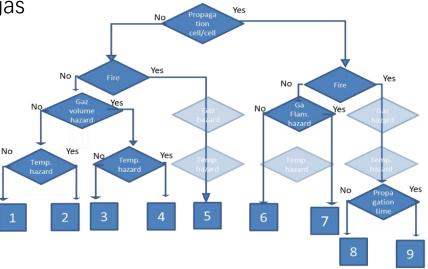
UN TDG IWG_Tests Responding to the Latest Draft Testing Protocol

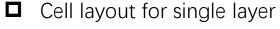
China

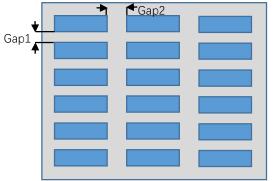

Background


- > Intrinsic hazards of lithium cells/batteries can be represented by the capability of:
 - 1. thermal runaway to propagate from cell to cell
 - 2. generating fire
 - 3. generating significant quantities of toxic/flammable gas
 - 4. producing high temperature
- Required Test 1: Thermal Propagation
 Cell Level
 Module Level



Required Test 2: Cell Gas Volume Determination

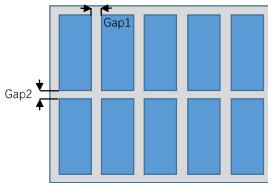

Concern & Proposal


Issue ID#	Page #	Clause/ Subclause	Text	Comment	Proposal
Issue1: Cell Propagation Test - Gap between Cells	4	38.3.6.1.2	The propagation test is conducted by placing 4 of the same cells inside a thermally insulated test fixture designed to tightly maintain the 4 cells in a row	 Gap between shipping cells relies on packing condition of the supplier Not all cells under transportation sticks close to each other The gap between cylindrical batteries in transportation can be up to 8mm The gap between prismatic batteries in transportation is at least 20mm 	The propagation test is conducted by placing 4 of the same cells in a row as arranged under transportation condition inside a thermally insulated test fixture
Issue2: Test SOC	4	38.3.6.1.2	The SOC shall be verified at 100% SOC or undischarged primary cells or batteries	 Cell/module on market is not shipped at a uniform SOC such as 100% SOC Hazards of cells in varied SOC have unneglectable differences 	The SOC shall be verified at transport SOC
Issue3: Heater Parameter	4	38.3.6.1.2	The size of the heater contact area shall be 20% of the cell surface or smaller	In some cases, the small heater fails to trigger the large prismatic cells into thermal runaway	Follow the regulation of initiation methods in ISO 6469-1 AMD
Issue4: Cell Gas Volume Determination	6	38.3.6.2.3	The result could be expressed as: • no gas volume measured; or • gas volume below [XX] liters; or • gas volume above [XX] liters.	When comparing the venting gas of cells with different capacities, it is suggested to be demonstrated in L/Ah	 The result could be expressed as: no gas volume measured; or gas volume below [XX] liters/Ah; or gas volume above [XX] liters/Ah.

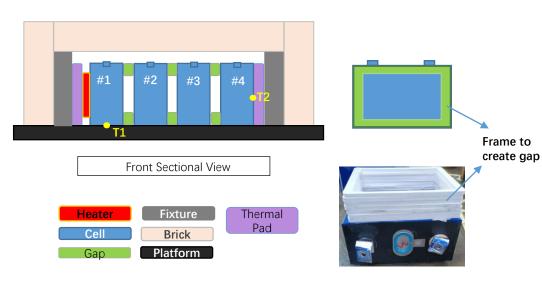

1. Cell Propagation Test – Gap between Cells

Typical Packaging for Cell/Module

- Gap between shipping cells relies on packing condition of the supplier
- Not all cells under transportation sticks close to each other
- For example, gap between cylindrical batteries in transportation can be up to 8mm. Gap between prismatic batteries in transportation may be larger than 20mm



□ Module layout for single layer



1. Cell Propagation Test – Gap between Cells

Cell propagation test results with/without a cell gap vary markedly

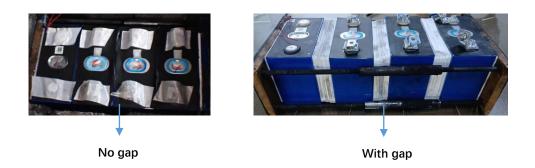

- Test object: 4 identical cells (100%SOC) in a row with gap in between
- Test condition: to maximize heat containmentInitial method: external heating

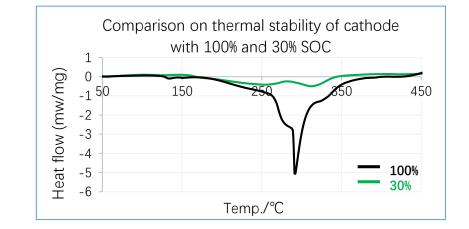
Table 1: Thermal Propagation Results with Different Gaps

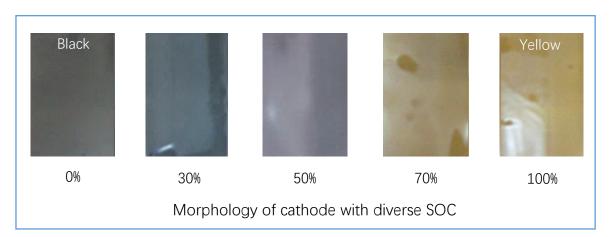
	Cell			emp [°C]	
DUT	Information	[mm]	T1	T2	Cell #2
1	NCM-1: 629Wh, 70*148*110	0	571	779	TR @ 1min32s
2		10	507	783	TR @ 8min35s
3		20	484	28	No TP

 \star Cell #1 TR considered as 0s

Proposal 1:

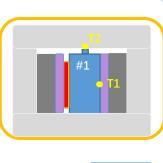
It is suggested that arrangement of the 4 cells follows transportation condition


2. Test SOC vs. Transport SOC


Cell/module on market is not shipped at a uniform SOC, such as 100% SOC

Source of the Product	Shipping SOC
OEM-1	30~40%
OEM-2	55~70%
OEM-3	40~50%

1 Battery stability decreases along with SOC increasing on material level



2. Test SOC vs. Transport SOC

② Hazards of cells in varied SOC have unneglectable differences at required testing 1&2

- I. TR at certain SOC shows distinct phenomena
 - Test object: 1 cell with fixture, forced into TR, 2 repetitions
 Test condition: wrapped with foam in a carton (packing condition)
 Initial method: external heating

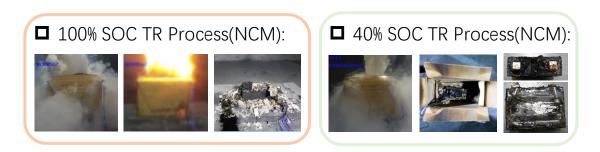
1	10	1	1	
			and the second second	
		and the	Contraction of the	
			11	1000

Heater	Thermal Pad
Cell	Foam
Fixture	Carton

II. Quantity of venting gas varies as SOC of battery changes

Table 3: Cell Gas Volume of NCM-1 at Different SOC

DUT	SOC	Total Volume / L	Unit Volume / (L/Ah)
1	100%	340	2.01
2	40%	218	1.29


Proposal 2:

It is suggested that all the testing shall be conducted at transport SOC

	Table 2: Thermal	Runaway	Results	at Different	SOC
--	------------------	---------	---------	--------------	-----

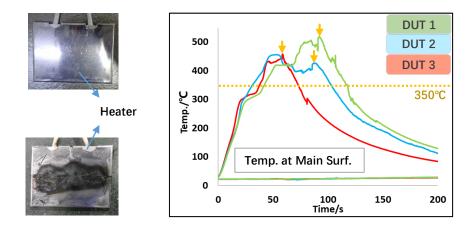
DUT	Cell Information	SOC	Temp. @Surf. Center	Temp. @Vent	Result		
	IIIIOIIIIdliOII		T1	T2			
1	NCM-1:	100%	720	835	Fire		
2	629Wh, 70*148*110	40%	513	486	Smoke Only		
3	NCM-2:	100%	670	812	Fire		
4	431Wh, 52*148*103	40%	477	453	Smoke Only		
5	LFP-1:	100%	279	330	Smoke Only		
6	902Wh, 71*204*173	40%	210	163	Slow Smoke		
	* Coll #1 TD in all eacor						

* Cell #1 TR in all cases

3. Heater Parameter

In some cases, the small heater fails to trigger the large prismatic cells into thermal runaway because heater failed itself Table 3: Thermal Runaway Results using Different Heater Parameters

 Cell Info.: NCM-2, 100% SOC Surface Area Ratio (Heater to Cell): about 24% 	
Heater Cell Thermal Pad Fixture	


- On the other hand, small heater with high power may result in localized cell surface damage
- Heater determination requires a lot of trials and errors in finalizing heater dimension and power

Proposal 3:

• It is suggested to follow the regulation of initiation methods in ISO 6469-1 AMD

	Heater Information		Time to Heater Failure	
DUT	Properties	Power [w]	(Baseline: 350°C)	
1	Size: 60*80 mm ²	500	After ~50s	
2		600	After ~50s	
3	Heating Rate: 5~13 ℃/s	700	After ~20s	

* Cell #1 No TR in all cases

Conclusion

- Issue1: Cell Propagation Test Gap between Cells
- Proposal 1: layout of the 4 cells to be tested follows transportation condition
- Issue2: Test SOC
- Proposal 2: all the testing is carried out at transport SOC
- Issue3: Heater Parameter
- Proposal 3: follow the regulation of initiation methods in ISO 6469-1 AMD
- Issue4: Cell Gas Volume Determination
- Proposal 4: demonstrated in L/Ah on account of cells with varied ranges of capacities

Thank you